LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – CHEMISTRY

FIRST SEMESTER - NOVEMBER 2007

CH 1808 - QUANTUM CHEMISTRY & GROUP THEORY

AD 16

Date: 31/10/2007	Dept. No.	Max. : 100 Marks
Time: 1:00 - 4:00		

PART-A

ANSWER ALL QUESTIONS

 $(10 \times 2 = 20)$

- 1. If Ae^{-ax} is an eigen function of the operator d^2/dx^2 , what is its eigen value?
- 2. Show that the first two members of Legendre Polynomials, x and $\frac{1}{2}(3x^2-1)$ are mutually orthogonal over [-1,1]
- 3. Define a well-behaved function in quantum mechanics.
- 4. How are energy and length expressed or measured in atomic units?
- 5. Write the time-dependent Schrodinger wave equation for a single particle in 1-D in stationary state.
- 6. What is a node? Draw the radial distribution plot for 3s orbital of H-atom and indicate where the nodes are.
- 7. Differentiate quantum mechanically a 'fermion' from a 'boson'.
- 8. Write the Hamiltonian operator for the H_2 molecule defining each term involved in it.
- 9. List the symmetry elements of pyridine molecule.
- 10. Identify the point groups for the following molecules:
 - (a) HCl
- (b) CH₃Cl
- (c) CH₂Cl₂
- d) IF₇

PART-B

ANSWER ANY **EIGHT** QUESTIONS

 $(8 \times 5 = 40)$

- 11. What do you understand by "Postulates of Quantum Mechanics"? State and explain any two of them.
- 12. What is a hermitian operator? Show that the eigen value of a hermitian operator is real.
- 13. Illustrate the significance of Bohr's Correspondence Principle taking any quantum mechanical model.
- 14. Explain briefly with a suitable example: (a) quantum mechanical tunneling
 - (b) Principle of Mutual Exclusion

(3+2)

- 15. (a) Show that [d/dx, x] = 1
 - (b) What are the values of $[\mathbf{x}, \mathbf{p}_x]$ and $[\mathbf{L}^2, \mathbf{L}_x]$? What is their physical significance? (2+2+1)
- 16. What is Slater determinant? Taking He atom in its excited state (1s¹, 2s¹) write the four Slater determinants.
- 17. Define and explain the overlap, coulomb and resonance integrals which are found in solving H_2^+ problem using the LCAO method?
- 18. State the Variation Theorem. Apply the variation method to get an upper bound to the ground state energy of particle in a 1-D box using the trial function $\psi = x(a^2-x^2)$, where a is the length of the box. Compare your result with the true value. (2+3)
- 19. CO absorbs energy at 768 m⁻¹. The absorption can be attributed to the J=1 to J=2 transition. Using the expression for the energy of the rigid rotor, calculate the moment of inertia and the internuclear distance.
- 20. $\psi = (2a/\pi)^{1/4} \exp(-ax^2)$ is an eigen function of the hamiltonian operator
 - $H = -(h^2/8\pi^2 m) d^2/dx^2 + (1/2) kx^2$ for the 1-D Simple Harmonic Oscillator.
 - a) Find the eigenvalue E of $H\Psi = E\Psi$
 - b) Show that the above obtained eigen value in terms of the classical frequency
 - $v = (1/2\pi)\sqrt{(k/m)}$ and the constant $a = (\pi/h)(km)^{1/2}$ is E = (1/2)hv. (4+1)

- 21. (a) Explain the concept of "Group' in group theory with an example.
 - (b) When do we say two symmetry operations are in the same class? Illustrate with a suitable example. (3+2)
- 22. (a) Give the reduction formula and define the terms used.
 - (b) Give the meaning of (i) A_u (ii) E'' with their subscripts and superscripts, which represent the irreducible representations in a character table. (2+3)

a) Set up the Schroedinger equation for a particle in 1-D box and solve it for its energy and wave function.
b) For the butadiene molecule, calculate the λ_{max} on the basis of a particle in a 1-D box of length 5.0 Å.

(7+3)

- 24. Discuss the Pauli Exclusion Principle in quantum mechanics applied to He atom in its ground state. (10)
- 25. Discuss the Molecular Orbital treatment of H₂ molecule and explain how the Valance Bond (Heitler-London) method overcomes some of the difficulties of MO theory. (10)
- 26. a) What are the three important approximations that distinguish the HMO method from other LCAO methods.
 - b) Write down the secular determinant obtained on applying Huckel's method to allyl cation. Obtain therefrom expressions for the energy levels and the wave functions. (3+7)
- 27. a) Write briefly on Born-Oppenheimer approximation.
 - b) Calculate the energy in cm⁻¹ of the first two energy levels of a particle in a box and their energy difference for (a) an electron in a box of 2Å in length (b) a ball-bearing of mass 1g in box of 1 cm length. Compare the results and on their basis enunciate the Bohr's Correspondence Principle.

(4+6)

28. Find the number, symmetry species of the infrared and Raman active vibrations of CCl₄, which belongs to T_d point group. State how many of them are coincident.

(You may, if you wish, use the table of f(R) given below for solving this).

Operation:	Е	σ	i	C_2	C_3	C_4	C ₅	C_6	S_3	S_4	S_5	S_6	S_8
f(R):	3	1	-3	-1	0	1	1.618	2	-2	-1	0.382	0	0.414
For any C_n , $f(R) = 1 + 2\cos(2\pi/n)$,					For any S_n , $f(R) = -1 + 2\cos(2\pi/n)$								

	T_d E	$8C_3$	$3C_2$	6S ₄	$6\sigma_{\rm d}$		
$\begin{array}{c} A_1 \\ A_2 \\ E \\ T_1 \\ T_2 \end{array}$	1 1 2 3 3	1 1 -1 0 0	1 1 2 -1 -1	1 -1 0 1 -1	1 -1 0 -1 1	(R_x,R_y,R_z) (x,y,z)	$x^{2}+y^{2}+z^{2}$ $(2z^{2}-x^{2}-y^{2}; x^{2}-y^{2})$ (xy, yz, zx)
